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The telegrapher’s equation (TE) is the continuum limit of a persisting random walker. We find that
the TE reproduces the original spectrum almost exactly for all wavelengths—far beyond the validity of
the expansion. This surprising property is used as a paradigm towards the derivation of a generalized
hydrodynamics. Applications to other problems are explored.
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When the motion of a persisting random walker is tak-
en to its continuum limit, the dynamics is then given by
the telegrapher’s equation (TE). In this Rapid Communi-
cation we first show that the spectrum of the TE repro-
duces almost exactly for all wavelengths the spectrum of
the original, discrete process. We then explore the impli-
cations of this surprising spectral proximity with the in-
tention of using it as a guiding paradigm in kinetic
theory. The implications of this result may very well ap-
ply to other problems as well. In general one does not
have the right to expect the ultraviolet limits of a contin-
uum model and its microscopic antecedent to have much
in common-—hence the surprise. In the present problem
the validity of the results predicted by the TE greatly
exceeds the validity of the derivation that begets it.

To put things into perspective, we remind the reader
that the spectral behavior of the time-discrete or time-
continuous, completely uncorrelated walker and the con-
tinuum limit of this process, the Fokker-Planck equation,
are completely different in the ultraviolet regime. In fact,
this high-k discrepancy of the Fokker-Planck equation is
considered to be one of its major deficiencies [1].

Technically, the spectral proximity of the TE to the
persisting random walker can be traced to the effects of
memory built into the original process and to the fact
that the expansion preserves V, the characteristic speed
of the walker. This speed is the basic invariant of the
original process. That our expansion preserves such in-
variants is crucial. It allows us to circumvent the limita-
tions usually imposed by a long-wavelength expansion.
The process described by the resulting equations is en-
dowed with some important short-wavelength features of
the original process, which otherwise would be lost. This
property was probably noted before but does not seem to
be appreciated or, what is more important, explored.

Extrapolating beyond the technical aspects of the
present problem, one recognizes the general importance
of a process with memory and an expansion that does not
destroy the basic invariants of the process. In such an ex-
pansion, space and time must play an equally important
role. The hyperbolic nature of the resulting, continuum
equations is the macroscopic manifestation of such an ex-
pansion. We expect that these equations will remain, in
the spectral sense, uniformly close to the original process.
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The present problem provides us with a new outlook
on some of the classical results, the most notable of
which are the Navier-Stokes equations—the NSE’s. The
NSE’s are the gas-dynamic analogy of the Fokker-Planck
equation—the low-k universe of the uncorrelated ran-
dom walker. In the Chapman-Enskog expansion of the
Boltzmann equation, which begets the NSE’s, time and
space are not kept on equal footing. Time enters as a pas-
sive variable that is eliminated in favor of its spatial
counterpart, rendering the process completely local time-
wise. The elimination is achieved at the expense of an
ever increasing order of spatial derivatives as higher-
order corrections are attended. Both the resulting NSE’s
and, even more so, higher-order corrections grossly
overestimate the actual high-k behavior. Moreover, the
Burnett equations, obtained at the order following the
NSE’s, are unstable when subjected to short-wavelength
perturbations which render these equations ill posed.

One is tempted to consider the hyperbolic 13-moment
equations, of Grad, as the macroscopic analogy of the
telegrapher’s equation. However, Grad’s equations are
plagued by a number of mathematical difficulties that
greatly reduce their viability, and in fact these equations
have hardly ever been used to address real-world prob-
lems. On top of these difficulties and the complexity of
Grad equations, one has to add that the mathematical
sense in which these equations approximate the original
process is not clear. The method of moments does not
seem to be related in a natural way either to the Hilbert
or to the Chapman-Enskog expansion.

The idea behind the ad hoc approach of Khonkin [2] is
a better starting point. Though per se it is only partially
correct, it can be made into a systematic asymptotic pro-
cedure in which space and time are kept on equal footing.
The crucial step is to realize that it is necessary to bal-
ance time and space. To this end, in addition to the usual
slow time scale, we have to introduce into the expansion
a fast time scale. It turns out that the presence of these
two time scales, in parallel with two spatial scales, cap-
tures the needed effects of memory. Note that the addi-
tional time scale has to be a fast one in order to balance
the fast spatial scale. If two slow-time scales are em-
ployed, one obtains a direct version of the iterative
Chapman-Enskog approach [3].
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These ideas are not merely speculations. Recently they
were applied to a simple kinetic problem —the Broadwell
model [4]. The resulting hyperbolic equations reflect the
symmetric role given to space and time. Their hyperbolic
nature also assures freedom from paradoxes of infinite
fluxes and infinite speed of propagation. Above all, we
have verified that the ultraviolet part of these equations
coincides to leading order with the corresponding part of
the linearized Broadwell model [5]. At least, on the
linearized level, the macroscopic equations reproduce the
original spectrum at all wavelengths. Thus the derived
macroscopic equations are valid far beyond the formal
limits of the expansion.

On all accounts such an expansion is superior to the
Chapman-Enskog procedure. (This is even more trans-
parent if the expansion is carried further, beyond the lev-
el of the continuum.) Our expansion preserves the hyper-
bolic nature of the resulting equations with a modified
stress variable. In contrast, in the Chapman-Enskog pro-
cedure the higher-order corrections enter as higher and
higher-order gradients acting on the same variables.
Moreover, certain effects included in our equations al-
ready at leading order will never be recovered in the
Chapman-Enskog procedure. More details will be pro-
vided elsewhere [5].

However, some cautious remark is in order; our discus-
sion assumed implicitly that the process is' either linear or
weakly nonlinear. In a strongly nonlinear process, in
general, the spectral proximity of linearized spectra does
not imply proximity of the resulting dynamics. For in-
stance, under a large perturbation, nonlinear hyperbolic
equations describing a macroscopic process may break
down after a finite time, while the equations describing
the microscopic process will continue to provide a per-
fectly acceptable solution.

We now turn to the technical aspects of this Rapid
Communication. Following Goldstein [6] consider the
voyage of a persistent random walker in 7 intervals on an
equally /-spaced one-dimensional (1D) lattice. Let o(x,?)
be the probability density function associated with point
x at time ¢; then o(x,1) satisfies the following equation:

.
1—
24

’
-
We assume that ¢, the correlation coefficient between
the forward moving and reversing particle, is finite. This
assures a finite mean speed when the limit / =dx /2\,0,
7=dt \\0 is taken. The constant A is related to c¢ via
c=1—dt/A.
We now expand (1) in 7 and [ to express it as an opera-
tor equation

o(t+7,x)= [o(t,x —D+o(t,x +1))]

o(t—7,x) . (1)

2[cosh(rd, ) 1]o +~-[cosh(13, ) —e e

=2[cosh(/3,)—1]o . (2)

A well-balanced continuum level is obtained, assuming
that V'=I/7 remains finite in the limit. Then, either by
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taking the first terms in expansion or taking the limit, we
obtain

o, o,=V3,, . (3)

1
+ —_
44
Equation (3) is known as the telegrapher’s equation.
To continue, we take the Fourier transform of (2) in
both space and time to obtain (9,«>iw, 0, «>ik)

T
44 —271

2
sin
2

sinTw =sin? [% } . 4)

Let o=wpy t+iw;; then (4) implies
cos(wg 7)[cosh(w;7)— 7y sinh(w;7)]=cos(kl) , (5a)
sin(7wg )[sinh(7w;)— 7y cosh(w;7)]=0, (5b)

where ¥y “'=4 4 —27. For sintog 70, Eq. (5) leads to

cos(Twpg )
———————=cos(lk) (6a)
cosh(rw;)
and
7y =tanh(7tw;) . (6b)
Using (6b) in (6a) yields
(k)
cos( )= L (7)
TWR \/ - 1’27/2

Equation (7) describes a discrete process and as such
the shortest wavelength is given by the size of the spa-
tiotemporal lattice. To compare it with a continuum ana-
log, we envision a lattice that repeatedly is made dense
with the intention of ultimately proceeding to the limit.
If the problem is posed as an integral operator on a con-
tinuum, one can carry on high-k expansion of the discrete
process and take such a limit.

A slightly more transparent form of (7) is obtained
after the expansion of the radical

*y?
2

TWR
2

TkV
2

2 2

2
sin =—72Z + |1+ sin (8)

A glance at the dispersion relation (8) reveals a gap
zone in the 7y <<1 vicinity of kI =2mn. In these gaps
waves are attenuated and cannot propagate. This result
is to be compared with the spectrum of its low-k descen-
dent, the TE, which yields

2
ox + L=k ©)

For k2<y2/V? the behavior is purely diffusive (wz =0)
with attenuation given as 20, =y +V y2—4k?V?2. Disre-
garding the fact that (9) was derived for small k’s, we
look at its behavior for arbitrary k and observe that the
spectra of (8) and (9) overlap very nicely everywhere but
at the higher gap zones, which are missed by the
telegrapher’s equation. But even there, the absolute
difference between the approximation and its antecedent
is small, confirming our assertion on the proximity of the
spectra. Note that V, the common characteristic speed of
all wavelengths, was preserved by the small-k expansion.
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The spectral proximity should not be taken for grant-
ed. A far more typical example is that of the totally
time-continuous uncorrelated random walker, wandering
according to ‘

D

a,=—lzi[a(t,x+1)—2a(x,x)+a(z,x—z)] (10)
and the Fokker-Planck limit (/ \,0,)

0,=Dy0,y - (11)
In Fourier space, (11) and (10) are

w;=—Dyk? (12a)
and

2
0y =—Dy3n (lkzl/Z) , (12b)

respectively. Written as an infinite sum, the right-hand
side (rhs) of (12b) is essentially the Kramers-Moyal ex-
pansion. The rhs of (12a) is the first term in this expan-
sion. Clearly, for large k the spectra of (12a) and (12b)
have nothing in common. A similar phenomenon occurs
if one considers the time-discrete uncorrelated random
walker. These examples describe a typical state of affairs
wherein the continuum model is neither expected nor
capable of describing properly the short-wavelength
behavior of its antecedent. Moreover, it follows from
Pawula’s theorem [7,8] that a higher-order polynomial
approximation of (12b) will not eliminate the short-
wavelength difficulty. For instance, extending (12a) to
the next level of expansion, (12b) yields

I%k*
=—D, |k*———
@1 0 12
and leads to an ill-posed problem
12
o,=D, Uxx+Ti‘0xxxx . (13)

Taking an odd number of terms, 2n —1, n > 1, in the ex-
pansion of (12b) renders the problem well posed but will
not preserve positivity. As we have recently demonstrat-
ed, to this end one has to replace (12b) with a globally
bounded operator [7]. The Lorentzian (1+/%k2/12)"},
being the simplest one, yields
12
at:DOUxx+—0xxt . (14)
12
Equation (4) is well posed and preserves positivity (it has
a maximum principle). It also properly describes the
response to an initial impulse. Equation (14) renders a

much better approximation of (10) than provided by the
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Fokker-Planck equation (11), but not as good as the one
given by the TE.

We further digress to note that the idea of regulariza-
tion that was just applied to the Kramers-Moyal expan-
sion has a quite wide range of applicability. It can be
used to express the dynamics of dense anharmonic lat-
tices [9]. We have used it to regularize the Chapman-
Enskog expansion [10] and thus to overcome the ill-posed
nature of the Burnett equations.

Though the TE is an excellent approximation of (1),
nevertheless one may be interested to obtain a further ap-
proximation of the original persisting walk. However,
for reasons which at this point are not completely clear, I
was not able to obtain a meaningful expansion of (1)
beyond the stage of the TE without ruining some of its
crucial features. If the regularized expansion is asym-
metric in k and o, the crucial property of hyperbolicity is
lost; if it is symmetric, then an additional, false charac-
teristic emerges. To make things worse, the false charac-
teristic is accompanied by an elliptic piece [e.g.,
0*=k*=(w?*—k?)(@?*+k?)] making the resulting equa-
tion evolutionarily unstable.

Returning to our main concern we focus on the lesson
to be learned from our simple problem. If on the level of
the master equation the process has memory, its neglect
for whatever reason(s) is perhaps the most singular per-
turbation of the process. Conversely, scaling the problem
in a way that assures that the effects of memory are in-
cluded provides us with a system that escapes the low-k
trap.

On the basis of both the present problem and the fast-
time expansion of the Broadwell model [5], we hope that
an analogous expansion of the Boltzmann equation will
yield well-behaved hyperbolic equations of gas dynamics.
Such equations should provide a far more refined approx-
imation of gas dynamics than it is possible to achieve
with the Navier-Stokes equations.

But perhaps one can take this idea one step beyond the
specific topic of kinetic theory of gases. Bringing the
effects of memory into a field theory and carrying an ex-
pansion that preserves the basic invariants of the problem
should result in a far better macroscopic description. At
least, in the two examples reported here, the resulting hy-
perbolic continuum seems to provide a notable approxi-
mation of the original process.
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